Acknowledgment. This work was supported, in part, by grants from the National Science Foundation, RIM 7817215, and the National Cancer Institute, CA 16598-06 and CA 28894-03. We thank Dr. Angel A. Román-Franco, Director of the Puerto Rico Cancer Center for his interest and support.

Registry No. EDTA, 60-00-4; EDTA-2Na, 139-33-3; Fe²⁺, 15438-31-0; O₂, 7782-44-7; H_2O_2 , 7722-84-1; Cu^{2+} , 15158-11-9; CH_4 ,

74-82-8; $\rm HClO_4$, 7601-90-3; $\rm H_2SO_4$, 7664-93-9; $\rm FeSO_4(NH_4)_2SO_4$, 10045-89-3; $\rm CuOCOCH_3$, 598-54-9; $\rm Cu^+$, 17493-86-6; $\it tert$ -butyl alcohol, 75-65-0; ethanol, 64-17-5; ethyl bromide, 74-96-4; 1-chloropropane, 540-54-5; 1-bromopropane, 106-94-5; 2-bromopropane, 75-26-3; ethyl sulfide, 352-93-2; 2-propanol, 67-63-0; ethyl acetate, 141-78-6; $\it tert$ -butyl acetate, 540-88-5; diethyl ether, 60-29-7; $\it n$ -propyl acetate, 109-60-4; ethyl trifluoroacetate, 383-63-1; $\it N,N$ -diethylaniline, 91-66-7; propylene, 115-07-1; ethylene, 74-85-1; isobutylene, 115-11-7; ethane, 74-84-0.

A ¹³C¹³C Spin-Spin Coupling Matrix for Azulene

Stefan Berger*

Fachbereich Chemie der Universität, Hans Meerweinstrasse, D-3550 Marburg, West Germany

Klaus-Peter Zeller

Institut für Organische Chemie der Universität, Auf der Morgenstelle, D-7400 Tübingen, West Germany

Received February 27, 1984

All resolvable ¹³C¹³C spin–spin coupling constants in 1-methylazulene (2) and 5-methylazulene (3) have been measured by the 2D-INADEQUATE technique in natural abundance. The data are compared with the results of various ¹³C-labeled azulenes and it is shown that the ¹³C¹³C spin–spin coupling constants are quite different from those in the naphthalene system.

¹³C¹³C spin-spin coupling constants can provide a detailed picture of the electronic framework of a molecule. In our earlier work on ¹³C¹³C spin-spin coupling constants in azulenes, ^{2,3} we have labeled various substituted and unsubstituted azulenes 1 with one or two ¹³C atoms to

enable the determination of ¹³C¹³C spin-spin coupling constants in these nonalternate aromatic compounds with respect to the labeled center.

Although considerable synthetic effort has been spent during this project, a complete description of the spin-spin coupling matrix could not be achieved. Especially the most interesting spin-spin coupling constant of the central bond between C-9 and C-10 is still missing.

With the publication of the INADEQUATE technique^{4a} in its two-dimensional version,^{4b} it is now possible to measure these values in natural abundance. We have shown that nearly all theoretically possible spin-spin coupling constants in naphthalenes can be obtained by this technique, including the small values over two and three bonds.⁵ In this paper, we have extended these studies to 1-methylazulene (2) and 5-methylazulene (3) in order to compare

Results and Discussion

The ¹³C¹³C spin-spin coupling constants measured in this work are given in Table I; included are the values from partially unpublished labeling studies. For azulene itself the data originate from 4-, 4,7-, and 6-¹³C-labeled azulene 1 as well as from 1D-INADEQUATE measurements. The data for 4-methylazulene (4) have been obtained from the 4-¹³C

compound, the data for 1-phenylazulene (5) from the 1-, the 3-, and the 4-¹³C-labeled compound and the data for 2-phenylazulene 6 from the 2-¹³C-labeled compound. The 2D-INADEQUATE spectra of 2 and 3 confirm nicely the chemical shift assignment given by Braun.⁶

By comparing the data in the vertical columns of Table I, it becomes evident that the chosen substituents, the phenyl and methyl group, do not have a pronounced effect

the values of these molecules with the data of the labeled compounds of our earlier work. Furthermore, a comparison of the magnetic frameworks of the azulene and the naphthalene system is given.

⁽¹⁾ For an authorative recent review, see: Marshall, J. L. In "Methods of Stereochemical Analysis"; Marchand, A. P., Ed.; Verlag Chemie International: Deerfield Beach, FL; Vol. 2, pp 1-241.

 ⁽²⁾ Berger, S.; Zeller, K. P. Tetrahedron 1980, 36, 1891-1893.
 (3) Zeller, K. P.; Berger, S. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1981, 36B, 858-864.

^{(4) (}a) Bax, A.; Freeman, R.; Kempsell, S. P. J. Am. Chem. Soc. 1980, 102, 4849-4851. (b) Mareci, T. H.; Freeman, R. J. Magn. Reson. 1982, 48, 158-163.

⁽⁵⁾ Berger, S. Org. Magn. Reson. 1984, 22, 47-51.

⁽⁶⁾ Braun, S.; Kinkeldei, J. Tetrahedron 1977, 33, 1827-1832.

Table I	13C13C Spin-Spin	Coupling Constants	(Hertz) in	Azulanes 1_6
THUIE I.		Condina Constants	III CIUZI III	AZUICHES 1-0

no.	$^{1}J_{12}$	$^{2}J_{13}$	$^{3}J_{14}$	$^{4}J_{15}$	$^{4}J_{16}$	$^{3}J_{17}$	$^{2}J_{18}$	$^{1}J_{19}$	$^{2}J_{110}$	$^{1}J_{23}$	$^{3}J_{24}$	$^{4}J_{25}$	$^{5}\!J_{26}$	⁴ J ₂₇	$^{3}J_{28}$
1ª	56.0		2.0		2.1	8.5		58.5	•	56.0			2.6	1.2	
2^b	56.9		1.9			9.2				56.9	8.0		3.2		7.0
3^b	56.0		1.9			9.7			9.8	56.0	8.1				8.0
4 ^c			2.0								7.5				
5^d	56.9	1.4	1.8	2.2		8.2		60.5	10.4	57.1					
6^e	57.2				2.1					57.2	8.1	1.4	2.7	1.4	8.1
no.	$^{2}J_{29}$	$^{2}J_{210}$	$^{2}J_{34}$	$^{3}J_{35}$	$^{4}J_{36}$	$^{4}J_{37}$	$^{3}J_{38}$	$^{2}J_{39}$	$^{1}J_{310}$	$^{1}J_{45}$	$^{2}J_{46}$	$^{3}J_{47}$	$^{3}J_{48}$	$^{2}J_{49}$	$^{1}J_{410}$
1			1.2		2.1	3.2			58.5	58.8	1.6	3.7		5.5	61.0
2									58.7	59.0		3.7			61.5
3	3.2	4.4		8.4				9.8		60.1	3.2			5.7	
4			0.95							60.5	0.8	3.4	2.0	6.0	61.0
5			1.8	8.6	2.0	2.0	2.1	9.1	57.3	58.9				5.5	61.4
6	4.3	4.3													
no.	$^{1}J_{56}$	$^2 \! J_{57}$	$^{3}J_{58}$	$^{3}J_{59}$	$^{2}J_{510}$	$^{1}J_{67}$	$^{2}J_{68}$	$^{3}J_{69}$	$^{3}J_{610}$	$^{1}J_{78}$	$^{2}J_{79}$	$^{3}J_{710}$	$^{1}J_{89}$	$^{2}J_{810}$	$^{1}J_{910}$
1	58.4					58.4	1.7	3.2	3.2	58.8	1.7	0.6	61.0		
2	58.9	1.9	3.4			58.7				59.6			61.7		45.5
3		1.9	3.8			59.8		5.1	5.1	59.8				5.6	

^aData from 4-, 6-, and 4,7-¹³C-labeled azulene 1 and from 1D INADEQUATE measurements. ^bData from 2D-INADEQUATE measurements. ^cData from 4-¹³C-labeled-4. ^dData from 1-, 3-, and 4-¹³C-labeled 5. ^eData from 2-¹³C-labeled 6.

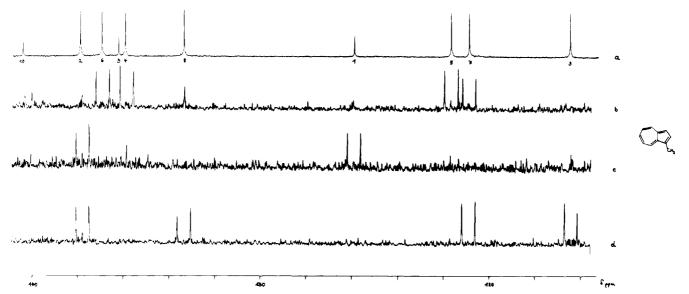
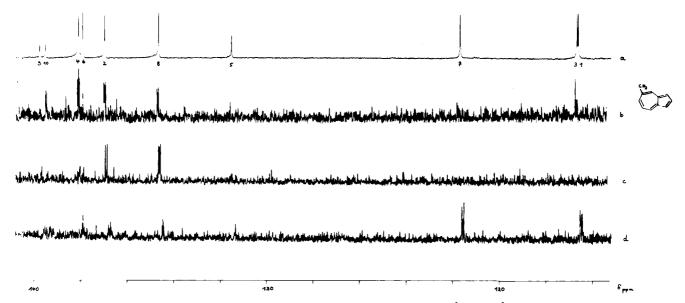


Figure 1. Examples of cross sections from the two-dimensional data matrix of 2 showing ${}^1J_{\rm CC}$ spin–spin coupling constants. (a) Normal ${}^{13}{\rm C}$ NMR spectrum (aromatic region only). (b) Trace with ${}^4J_{\rm C-6-C-7}$ and ${}^1J_{\rm C-4-C-5}$. (c) Trace with ${}^1J_{\rm C-1-C-2}$. (d) Trace with ${}^1J_{\rm C-2-C-3}$ and ${}^1J_{\rm C-7-C-8}$.

on the spin-spin coupling constants. Only the carbon atoms directly attached to the substituent show slightly larger spin-spin coupling values over one bond. Therefore, from Table I values can be estimated for the parent system 1 in cases where they cannot be measured directly for symmetry reasons. Further discussion is therefore restricted to azulene 1 itself.

To demonstrate the resolving power and the quality of the 2D-INADEQUATE spectra obtained by us, some typical traces of the two-dimensional matrix for compounds 2 and 3 displaying spin-spin coupling constants over different bonds are reproduced in Figures 1 and 2. For comparison purposes the spin-spin coupling values of 1- and 2-methylnaphthalene are reproduced in Table II.⁵

Spin-Spin Coupling Constants over One Bond. The ${}^{1}J_{CC}$ values for azulene (1) are given in the formula below.


The comparison of these with the corresponding values in

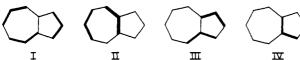
naphthalene reveals as most significant difference a remarkably lower spin-spin coupling constant for the central C-9-C-10 bond in azulene (ca. 15%). It has been argued in theoretical papers⁷ that the central bond in azulene is rather weak and for HMO calculations a overlap integral of 0.8 was proposed.⁸

We feel that the $^{13}\text{C}^{13}\text{C}$ spin-spin coupling constant is—apart from the longer bond distance—the first experimental evidence for this theoretical prediction. However, the attempt to relate the $^{1}J_{\text{CC}}$ values in azulene to HMO π bond orders—as has been done with fair success for naphthalene—completely fails. The question is, whether the π bond orders are not very descriptive for the system or whether the different bond angles of the azulene ring compared with naphthalene perturb the spin-spin coupling values. Since a correlation cannot be found with quantum mechanical data of much higher sophistication, such as the calculation of the Fermi contact contribution to the spin-spin coupling constant according to Blizzard

⁽⁷⁾ Heilbronner, E. In "Nonbenzenoid Aromatic Compounds"; Ginsburg, D., Ed.; Interscience: New York, 1959; Chapter 5.

⁽⁸⁾ Kirby, E. C. J. Chem. Res., Synop. 1982, 303.

(a) Normal ¹³C NMR spectrum (aromatic region only). (b) Trace with $^2J_{\text{C-8-C-10}}$ and $^3H_{\text{C-2-C-4}}$. (c) Trace with $^3J_{\text{C-2-C-8}}$. (d) Trace with $^3J_{\text{C-1-C-7}}$. Figure 2. Examples of cross sections from the two-dimensional data matrix of 3 showing $^2J_{\rm CC}$ and $^34_{\rm CC}$ spin-spin coupling constants.

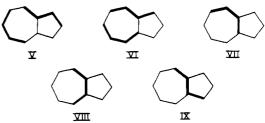

Table II. ¹³C¹³C Spin-Spin Coupling Constants (Hertz) in 1- and 2-Methylnaphthalene⁵ (7 and 8)

no.	$^{1}\!J_{12}$	$^{2}J_{13}$	$^{3}J_{14}$	$^3J_{15}$	$^{4}J_{16}$	$^{3}J_{17}$	$^{2}J_{18}$	$^{1}\!J_{19}$	$^{2}J_{110}$	$^{1}J_{23}$	$^{2}J_{24}$	$^4J_{25}$	$^{5}J_{26}$	$^4J_{27}$	$^{3}\!J_{28}$
7	62.0	1.3	7.8	2.8		5.0		55.2		54.0	2.4				4.2
8	62.0		7.0	2.9		5.5	2.3	56.3		53.6	1.7				5.5
no.	$^{2}J_{29}$	$^{3}J_{210}$	$^{1}J_{34}$	$^{3}J_{35}$	$^{4}J_{36}$	$^{5}J_{37}$	$^{4}J_{38}$	$^{3}J_{39}$	$^{2}J_{310}$	$^{2}J_{45}$	$^{3}J_{46}$	$^{4}J_{47}$	$^{3}J_{48}$	$^{2}J_{49}$	$^{1}J_{410}$
7	_	7.5	59.8	5.7				7.0		2.1	5.4		2.7		55.5
8	1.1	7.4	а	5.5				7.0	1.5	2.4	5.4		2.7		55.7
no.	$^{1}J_{56}$	$^2J_{57}$	$^{3}J_{58}$	$^{2}J_{59}$	$^{1}J_{510}$	$^{1}J_{67}$	$^{2}J_{68}$	$^{3}J_{69}$	$^{2}J_{610}$	$^{1}J_{78}$	$^{2}J_{79}$	$^3J_{710}$	$^{1}J_{89}$	$^{2}J_{810}$	$^{1}J_{910}$
7	59.7	2.4	8.2		55.3	а	2.4	7.3	1.6	59.9	1.5	8.0	56.3		53.5
8	60.0	2.1	7.9		55.8	53.2	2.2	7.9	1.5	60.1	1.4	7.9	55.6		52.3

^a Not observed.⁵

and Santry9 or with ab initio calculations with expanded basis set, 10 where the geometry of azulene is the basis of the calculations, the demand for a satisfactory theory of spin-spin coupling constant transmission is quite obvious.

Spin-Spin Coupling Constants over Two Bonds. The possible geminal spin-spin coupling constants in the azulene ring are drawn in the formula I-IV and can be



divided into those belonging to the seven-membered ring and those belonging to the five-membered ring. One coupling constant (formula III) connects both ring systems.

The geminal coupling constants within the five-membered ring can also be understood as vicinal coupling constants. Therefore, it seems possible to observe unusual values for these ${}^{13}\mathrm{C}{}^{13}\mathrm{C}$ spin–spin coupling constants. In fact, a rather large geminal coupling value of 10 Hz is

measured for ${}^{2}J_{C-1-C-10}$ involving the central bond. However, the other spin-spin coupling constants of the fivemembered ring range in the usual order of 1-3 Hz. In line with these findings all geminal spin-spin coupling constants of the seven-membered ring are again very small except ${}^{2}J_{C-4-C-9}$ which also involves the central bond. Thus, the geminal coupling constants including the central bond in azulene are quite unusual and have no equivalent in the naphthalene series.

Spin-Spin Coupling Constants over Three Bonds. The vicinal spin-spin coupling constants of the azulene ring can be divided in three topologically different groups and are drawn in the formulas V-IX. The different

characters are associated with cisoid linkages, e.g., ${}^3J_{\text{C-10-C-6}}$, transoid linkages along the outer perimeter, e.g., ${}^{3}J_{\text{C-2-C-4}}$,


⁽⁹⁾ Blizzard, C.; Santry, D. P. J. Chem. Soc., D 1970, 87-88. We used the SCF-FERMI program written by I. Brown, Quantum Chemistry Program Exchange, Indiana University, No. 457.

(10) Buenker, R. J., Peyerimhoff, Chem. Phys. Lett. 1969, 3, 37-42.

and a transoid linkage through the central bond, ${}^3J_{\text{C-1-C-4}}$.

Compared to the naphthalene system where the cisoid vicinal coupling constants, e.g., ${}^3J_{\text{C-1-C-4}}$ or ${}^3J_{\text{C-7-C-10}}$ are large (ca. 8 Hz) and the transoid vicinal coupling constants, e.g., ${}^3J_{\text{C-2-C-8}}$ or ${}^3J_{\text{C-1-C-7}}$ are smaller (ca. 4–5 Hz), the reversed situation holds for azulene. In this case, the transoid linkages like ${}^3J_{\text{C-1-C-7}}$ or ${}^3J_{\text{C-2-C-4}}$ show values of about 8 Hz and the cisoid linkages like ${}^3J_{\text{C-4-C-7}}$ and ${}^3H_{\text{C-6-C-10}}$ values of 3–4 Hz. For the cisoid linkages again a double pathway is possible and these values can be understood as a sum of 3J and 4J spin-spin coupling constants. Thus the low values for the cisoid linkages suggest that the 4J spin-spin coupling constants are negative. Only the small transoid spin-spin coupling constant through the central bond is in accordance with the similar coupling in naphthalene. Again, a correlation with quantum mechanical data like π bond orders fails for the azulene system.

Spin-Spin Coupling Constants over Four and Five Bonds. In azulene three different ${}^4J_{\rm CC}$ connections are possible. Furthermore, a ${}^5J_{\rm CC}$ spin-spin coupling constant relates C-2 with C-6. In the formulas X-XIII these link-

ages are shown. Contrary to the naphthalene system these spin–spin coupling constants can easily be observed with 1 to 2 Hz. The rather large $^5J_{\text{C-2-C-6}}$ value of 2.6 Hz is especially remarkable. If long-range $^{13}\text{C}^{13}\text{C}$ spin–spin coupling constants are related to π -electron polarizability, this value would suggest that polar forms like XIV are of some significance.

Conclusion

We have shown in this work that a complete ¹³C¹³C spin-spin coupling matrix can be obtained by the ^{2D-IN-ADEQUATE} technique. Data from earlier labeling studies were helpful in cases where the limited digital resolution of the data system used was not sufficient. Although the sign of the spin-spin coupling constants cannot be extracted from these measurements at present the qualitative interpretion of these values raises interesting questions on the electronic system of the azulene moiety. Unfortunately, a quantitative agreement between MO theory and

these experimental results is not in sight.

Experimental Section

The 2D-INADEQUATE spectra of 2 and 3 have been measured on a Bruker WH-400 NMR spectrometer with a 80 k Aspect 2000 computer and a Diablo Series 30 disk drive; ca. 0.5 g of freshly chromatographed (Al₂O₃/petroleum ether) 2 or 3 was dissolved in 2 mL of CDCl₃ and transferred to 8-mm sample tubes. The temperature of the NMR probe was maintained at 32 °C and the solutions were not degassed. The spectral width was 2604.2 Hz, 32 FIDs on 8192 data points were taken for each 2D experiment, resulting in 256K data. The 90° pulse width was 18 µs, for each FID 256 scans were accumulated and a relaxation delay of 12 s was used which gave a total experiment time of about 35 h for one τ value. A squared sine bell was used as a weighting function in f₁ dimension; Gaussian multiplication was applied in the f₂dimension. 2D-Fourier transformation yielded a 2D datafile of 512K computer words giving a digital resolution of 46.7 Hz in the f_1 and 0.32 Hz in the f_2 dimension after zero-filling. The pulse sequence of the 135° pulse angle method as published by Freeman was used.4 To detect all possible spin-spin coupling constants the measurements have been performed with refocusing delays (τ values) adjusted to 3, 5, 7, and 57 Hz. Quadrature detection was used in both dimensions, with a phase cycling procedure described in ref 11 using 32 steps, thus the spectral width in f₁ dimension was the same as in f2. The measurements were repeated with the standard 1D-INADEQUATE technique in high resolution using 64K data points which led partly to a confirmation of the 2D results.

The 1D-INADEQUATE measurements of 1 have been performed on 0.8 g of freshly chromatographed (Al₂O₃/petroleum ether) 1 dissolved in 4 mL CDCl₃ using a 10-mm o.d. NMR tube at 32 °C. The labeled material was measured on the same instrument with standard high-resolution techniques. The preparation of the $^{13}\text{C-labeled}$ azulenes is described elsewhere: $4.^{13}\text{C-1},^{1.12}$ 4,7- $^{13}\text{C-1},^{2}$ 6- $^{13}\text{C-1},^{13}$ 1- $^{13}\text{C-5},^{14}$ 3- and 4- $^{13}\text{C-5},^{15}$ and 2- $^{13}\text{C-6},^{15}$ The chemical shifts of 5 and 6 will be reported in ref 15.

Acknowledgment. This work was supported by the Fonds der chemischen Industrie. We are indebted to Prof. K. Hafner, Darmstadt, for a generous gift of compounds 2 and 3.

Registry No. 1, 275-51-4; 1-4- ^{13}C , 74626-95-2; 1-6- ^{13}C , 87295-52-1; 1-4, $7-^{13}C$ ₂, 78950-01-3; **2**, 769-31-3; **3**, 1654-55-3; **4**, 17647-77-7; **5**, 7206-60-2; **6**, 19227-07-7; **7**, 90-12-0; **8**, 91-57-6.

Total Synthesis of Curzerenone, Epicurzerenone, and Pyrocurzerenone

Masaaki Miyashita, Toshiaki Kumazawa, and Akira Yoshikoshi*

Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Sendai 980, Japan
Received February 14, 1984

Curzerenone (1) and epicurzerenone (2), representative furanoelemanoids, and pyrocurzerenone (3) were synthesized via the 3-methylfuran annulation reaction using 1-nitro-1-(phenylthio)propene (4) as the crucial step. The cyclic 1,3-dione 6, derived from γ -keto ester 7, reacted with the nitro olefin 4 with KF catalysis to yield dihydrofuran 14 as a diastereomeric mixture, which was converted to 3-methylfuran 5 on NaIO₄ oxidation followed by elimination of benzenesulfenic acid from the resulting sulfoxides in good overall yield. Curzerenone (1) and epicurzerenone (2) were synthesized from 5 in three steps.

Although the elemane skeleton is quite common, only five furanoelemanoids, curzerenone (1), epicurzerenone

(2), sericenine, isofuranogermacrene, has and isolinderalactone, have so far been found in nature. In addition,

⁽¹¹⁾ Bax, A.; Freeman, R.; Fraenkiel, T. A.; Levitt, M. H. J. Magn. Reson. 1981, 43, 478-483.

⁽¹²⁾ Becker, J.; Wentrup, C.; Katz, E.; Zeller, K. P. J. Am. Chem. Soc. 1980, 102, 5110-5112.

⁽¹³⁾ Gugel, H.; Zeller, K. P.; Wentrup, C. Chem. Ber. 1983, 116, 2775-2784.

⁽¹⁴⁾ Zeller, K. P. Angew. Chem. 1982, 94, 448; Angew. Chem., Int. Ed. Engl. 1982, 21, 440; Angew. Chem. Suppl. 1982, 1016-1020.

⁽¹⁵⁾ Wetzel, A.; Zeller, K. P., to be submitted.